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Generalization of the Darwin Lagrangian 
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Starting from a Lagrangian treatment of classical electrodynamics and using 
simple heuristic arguments, an effective generalization of the Darwin Lagrangian 
for point charges moving with ~rbitrary velocities (v < c) is obtained. In addition, 
another, the simplest a priori Lagrangian (preserving the most imPortant features 
of standard classical theory) is proposed. 

Standard classical electrodynamics rest on the two "pillars": Maxwell's 
equations (for fields and their sources) and Lorentz-Dirac equations of 
motion (for charged particles in given electromagnetic fields). Formally, 
one can interpret the contents of these fundamental groups of equations in 
three different ways: (1) one can regard the Lorentz-Dirac equations as 
formal definitions of fields E and B, and Maxwell equations as a genuine 
physical law; or (2) one can regard the Maxwell equations as implicit 
definitions of  fields via positions and motions of charges, and the Lorentz- 
Dirac equations as a physical law with an empirical content; or (3) one can 
regard both fundamental groups of equations on an equal footing as semi- 
analytical and semiempirical laws which can be modified as a result of  
experimental or theoretical arguments. Keeping in mind the history of 
physics, we think that the last approach is the best one. At present, however, 
none of these approaches gives a straightforward formal connection between 
these pillars. Hence, from a methodological point of view, standard classical 
electrodynamics is an essentially dualistic theory: not strictly a field theory 
and not a theory of  a direct electromagnetic interaction of charged particles. 

A second deficiency of  standard classical electrodynamics is connected 
with an essential ineffectiveness of this theory, even in the treatment of the 
very fundamental problem of the motion of  charges. Strictly speaking, one 
cannot write down the concrete equation of motion for two charges (of 
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comparable masses) if one does not know the previous full space-time 
trajectories of these particles. 

There have been definite attempts to overcome this particle-field dual- 
ism, and also to overcome the essential ineffectiveness of the standard 
classical theory. One such attempt is the elegant theoretical program 
[developed by Fokker (1929), Wheeler and Feynman (1945), and Hoyle 
and Narlikar (1974)] in which the electromagnetic field plays the inter- 
mediary for the interaction between charged particles, and can be eliminated 
completely. While this is recognised as a very interesting approach, unfortu- 
nately, the particular theory elaborated so far exhibits the same kind of 
ineffectiveness as the standard version of classical electrodynamics. Other 
proposals aiming to overcome the mentioned ineffectiveness start as a rule 
with the so-called a priori Lagrangians deprived of any heuristic connection 
with the Maxwell equations. 

A quite different attempt is traditionally connected with a program of 
nonlinear field theories, which (in view of serious mathematical complexity) 
lead also to very ineffective proposals. 

The aim of this paper is to give a concrete and simple possibility of 
"throwing a bridge" across the gap between Maxwell's equations and 
equations of motion, in order to obtain in the final result an effective 
dynamical theory of electromagnetic interaction of charged point particles, 
characterized by a lagrangian dependent on the instantaneous positions 
and velocities of these particles. 

We start from the Lagrangian treatment of the Maxwell equations 
(within field-theoretic treatment) in order to obtain a proper Lagrangian 
for charged point particles moving with arbitrary velocities (v < c). 

The basic integral invariant I of Noether's theorem is 

I = - -  ~ d 4 x  = ~ d3 x �9 d t  = L d t  (1) 
c 

where the functional ~ must be the Lagrangian density, which, via Hamil- 
ton's principle of least action, yields the Maxwell electromagnetic field 
equations. It is well known (e.g., Rohrlich, 1965; Jackson, 1975) that the 
Maxwell equations can be obtained equally well from the two possible 
options of the Lagrangian density 

1 1 
~a~l = - -  16~- F~F"~ - c  j~'A~' (2) 

or  

~2 =-~-~0~_A, 0 A -cJuA (3) 
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which may be supplemented by the Lorentz condition 

0t, A i" =0 

and the connection between the field strengths and the potentials: 

F ~ = O " A  ~ - O~A ~', F ~ = - F ~ 

where 

F ~ = 

F~,. = g , ~ F ' ~ t 3 g ~  = 

G, o, -B~, By 
Ey, Bz, O, 

\Ez,-By, 

-E~,, O, - B z ,  By  

-Ey, B~, O, 

- E ~ ,  - B y ,  B~,  

(4) 

(5) 

(5') 

and where goo = 1, gll =g22=g33 = - 1 ,  according to the more frequently 
used convention for the metric tensor, as used by Jackson (1975), but not 
by Rohrlich (1965). 

The principle of least action based on the action integral with 5r given 
by (2) yields the Euler-Lagrange equations, which become the Maxwell 
field equations: 

\ 

O ~ F ~  ~ = +,+Trj~ (6) 
c 

and here we have the advantage that Maxwell equations in this form do 
not require the additional specification of the Lorentz condition (4). 

An alternative choice of ~ given by (3) also yields the Maxwell field 
equations in the form 

FIA" = + 4 ~ ' j  t' (7) 
c 

which, supplemented by (4) and (5), are equivalent to the Maxwell 
equations (6). 

Now, what is essential to the method presented here is that we insist 
that there is a concrete specification of ~,  some linear combination of (2) 
and (3), which not only yields (in the usual way) the Maxwell equations 
when ~7 is treated as a function of A ~ and O " A  ~, but also represents the 
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"true" Lagrangian density in a sense that it also yields the equation of 
motion for field sources, i.e., for charges, when 

L= f ,~p d3x (8) 

is treated as a function of the positions and velocities of charges. Hence, 
a proper specification of 27 and L can give not only necessary relations 
between sources and their fields (which are expressed by Maxwell 
equations), but, above all, also can give the desired form of effective 
equations for charged point particles. 

Now we must solve the following crucial problem: what is the exact 
form of fields (connected with their particle sources) that must be substituted 
into 2~, given primarily in terms of A ~ and O~A~? And here (starting from 
the observation that the most experimentally confirmed domain of electrody- 
namics is connected with stationary and uniform motions of charges) we 
can postulate (according to the essential spirit of the classical Lagrangian 
formalism) that (8) must contain instantaneous positions and velocities 
of charged particles only (but not their accelerations or higher deriva- 
tives of their positions). This natural postulate gives us immediately a 
solution of the considered problem, because the only fields that conform 
to this condition are the well-known "velocity fields" of the considered 
charges, i.e., fields corresponding in standard theory to uniform motions 
of our charges. For actual (nonuniform) motions of the considered charges 
such fields cannot be the proper fields appearing in Lorentz-Dirac equations 
of motion, but they can be the proper "ghost fields" introduced for the 
evaluatl%n of ~ only. Now, fields are not connected simply with forces, 
but are connected with energetic characteristics of the electromagnetic 
system. 

According to our postulate, we have 

Q, 
a~ = R~[1 - /32+ ([~iRi)2] '/2 [1, ~ ]  

E~ = ^ , B i  = [~i x E i  2 2 2 3/2 R,[1-t~, +(l~iR~) ] 

where R~ = r-r~,  R~ = ]R~I, R~ = Ri/R~, I~ = v~/e, and r; and v~ are the actual 
position and velocity of Qi. 

Substituting these velocity fields into (8), we obtain for two charges 
Q,, Qj 

LlO = f &~ d3x (9) 
d 
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L2O = f 5~2~ d3x (10) 

where L U are those parts of the full Lagrangian L that correspond to the 
interaction between Q~ and Qj. Following the well-known "philosophy" of 
Wheeler and Feynman, only these Lo terms can be treated seriously for 
point charges, while the self-terms L. (divergent for point charges) are 
treated in this method as semiempirical terms of the form -mo~c2(1- 
vU c2)l/2. 

Integrals (9) and (10), unfortunately, do not seem to be analytically 
computable, but we can make a proper choice, i.e., to find a proper linear 
combination of (9) and (10), if v2/c 2 approximations of these integrals 
(which can be easily calculated) are compared with the well-known Darwin 
approximation of the same type. 

Corresponding calculations give us the following results: 

L 1 0  Q~Qjrl+�89 1 . . . .  2 1 1 ^ ^ = - ~ -~ l~r )  -~l~i I~j-~(l~ir)(l~ir)] 
r 

(11) 

L2~ = - Q ' Q j  [1 + /32  - ( [~ )2  _ �89 I~ 13j - �89 (1~,~) (13j ~)] (12) 
r 

while the Darwin Lagrangian L D is 

1 1 ^ ^ LD~ = -- Q'Qj [1 --~l~i I~j --~ (13i r)(13~ r)] (13) 
r 

where r=lr l ,  t = r / r ,  r = r j - r i ,  13 = 13~-13,. 
Now it is evident that if we want to obtain the simplest Lagrangian 

that is a generalization of (13), according to the adopted heuristic method, 
we must take the following form of L: 

L3ij = f ~.3ij d3x (14) 
d 

where 

~30 = 25f10 = ~72~ (15) 

Even in the case of the nonexistence of an analytical solution of this 
integral, it is evident that by assuming the Lagrangian (14), we obtain an 
effective theory of the electromagnetic interaction which can be tested 
experimentally. 

Apart from the obtained result (based on heuristic considerations given 
above), we also want to present here another proposal for the hypothetical 
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Lagrangian, which is the simplest relativistic generalization of the Darwin 
Lagrangian: 

Q, Qj(1 - [~i Bj)  (16) 
L4ij : ro[1 - [~i [~j + (13ir)(13jr)] 1/2 

This Lagrangian can be treated as an a priori  one, which preserves all 
essential features of the standard classical electrodynamics interpreted in 
the spirit of  the Wheeler-Feynman theoretical program, but at the same 
time it is more effective than (14) because of its simple analytical form. 

Assuming the Lagrangian (14) or (16), we proclaim a formal transition 
of pragmatic methods of classical electrodynamics from the domain of 
partial differential equations to the essentially simpler domain of ordinary 
differential equations. 

Naturally, one can ask for the reason for making the above hypotheses. 
The main reason is that an extensive and detailed analysis of the experi- 
mental basis of electrodynamics shows that we still have too narrow a range 
of experimental data to insist that the complicated and essentially ineffective 
standard theory is the unique proper theory of electromagnetic interaction 
in its classical limit. The nonstandard theories (such as the Wheeler- 
Feynman theoretical program) and well-known difficulties of the standard 
theory in the area of radiation phenomena show that even in the well-defined 
domain of classical problems the standard theory can be replaced by an 
essentially different and better theory~ Furthermore, we know that today 
quantum electrodynamics cannot uniquely determine (starting from funda- 
mental principles only) all the important features of the electromagnetic 
interaction of two moving charges in the classical limit. Hence, any theoreti- 
cal argument that exploits a connection between the Maxwell equations 
and the equations of motion of charged particles is of interest. A serious 
modification of classical electrodynamics is worth considering in view of 
the new light cast by experimental evidence (e.g., Kunstatter and Trainor, 
1984) on the historical rivalry of local and nonlocal theories of basic physical 
interactions. 
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